3GPP TSG SA WG3 LI
Tdoc S3LI01-130

30 October – 1 November, 2001
Aspen, Colorado, USA
Source:
Nokia Corporation
Contact:
Giorgi Gulbani
Title:
GLICv0 modification
Document for:
Discussion

Enclosed:
Tdoc S3LI01-131
Objectives

If the current GLICv0 header would in future be considered not feasible, then the GLIC header definition could be modified in order to meet coming requirements.

Before drafting presenting solution proposals, it looks reasonable to list the possible criteria for such a change.

As far as GLIC is not a protocol, sending and receiving ends cannot negotiate. Let’s say, a sending network element, the DF3 supports both GLICv0 and GLICv1, while the receiving network element, the LEA supports only GLICv0. Now, let’s say such DF3 sends CC data (PDU) encapsulated by GLICv1 header to the LEA in question. Then the receiving LEA has no means to ask the DF3 to retransmit the PDU encapsulated by GLICv0, because GLIC is not a protocol, but a header only. Therefore for GLIC modifications the backward compatibility goal cannot be achieved in principle. That is, GLICv1 could have been backward compatible with GLICv0 in case, if the receiving GLICv0 software could properly decode at least a crucial part of the GLICv1 message. All this in turn means that GLICv1 actually is a completely new header! Here comes our first bullet point:

· GLICv1 cannot be designed to be backward compatible with GLICv0.

Therefore, GLICv1 would be a completely new header and temporarily could be referred to as LIC header.

The GLICv1, or LIC has to be designed in the way, that the receiving LEA, supporting only GLICv0 must silently discard the whole PDU. Silent dropping of PDUs results in unrecoverable loss of the whole CC data for the given interception session. The apparent reason is that the sending DF3 cannot get a notification about the GLIC version error. That, once again is the consequence of the LIC (GLIC) not being a protocol. Hence, In the case where a LEA is connected to at least one DF3 which supports only GLICv0, and to at least one DF3 which supports LIC, then this LEA has to support both GLICv0 and LIC. Here we’ve got the next bullet point:

· LEAs using the GLIC mechanism must be able to decode both headers – GLICv0 and LIC (GLICv1)

At the moment, it is not possible to foresee what kind of new services the mobile network operators would offer to customers. These new challenges may require new information elements to be carried by LIC header. LIC should be sufficiently versatile for incorporating these new IEs. That would make the header future proof. Here comes the next bullet point:

· LIC should be designed in a future proof manner

In principle, it would be possible to use LIC over UDP for the Real Time (RT) traffic, and LIC over the TCP for the Non Real Time (NRT) traffic.

Let’s consider the PDU size problem. TS 23.060 defines the user data PDU size exchanged By GSNs across the Gn interface to be kept under 1500 octets. Hence, intercepting GSN would send to the DF3 CC payload of maximum length of 1500 octets. In case an operator opts to use the cheap Ethernet technology at the layer 2 across the HI2 port, then CC header plus payload must fit into 1500 octets, in order to avoid fragmentation.

RT traffic PDU sent over the UDP has to be forwarded immediately, or filled up in about 100 ms, or up to about 1400 octets, in order to meet stringent low packet delay (100 – 250 ms) and packet delay variation requirements.

Possible solutions in nutshell

From the discussion above, one could derive the following requirements for the GLICv1 design.

· LIC must be designed in a future proof manner

1. Future proofness of the LIC design

Two solutions could be identified. The most straightforward, versatile and reliable solution would adopt the dynamic encoding of the IEs in the LIC header. Another solution would make use of static LIC header with a number of optional IEs. Let’s look into each approach in more detail.

1.1 Dynamic LIC message

Dynamic header encoding/decoding is used in various global communication systems and technologies. For instance, IPv6 makes use of the ‘Next Header’ field. The SCCP messages of the SS7 stack are encoded in a dynamic way. Future Internet shall be based on IPv6. SS7 brought such success to conventional telephony signaling, that it has been selected as a basic signaling protocol for the GSM, and later for UMTS systems. The main point is that the encoding/decoding of the dynamic header takes only a tiny fraction of the CPU processing power and time, compared to the time and power consumed the by packet routing/delivering processes.

Besides, the dynamic encoding method provides for the most efficient design of making the header completely independent from the payload.

Hence, to our understanding dynamically encoded LIC message would be the best possible solution. The dynamic LIC message (header and the payload) could be encoded in the following way:

	
	
	Bits

	Octets
	
	8
	7
	6
	5
	4
	3
	2
	1

	1
	
	Version (‘0 0 1’)
	‘1’
	Spare ‘1 1‘
	DIR
	‘0’

	2
	
	Message Type (value 255)

	3-4
	
	Length

	5-6
	
	Sequence Number

	7
	
	Type of the first IE

	8
	
	Length of the first IE

	9 – k
	
	Value of the first IE

	…
	
	…

	m
	
	Type of the last IE (actual CC)

	m+1
	
	Length of the last IE (actual CC)

	(m+1) – n
	
	Value of the last IE (actual CC)

Figure 1: Possible outline of the dynamic LIC header and actual CC PDU

The following table lists possible IE type definitions.

Table 1. Possible IE type values in the dynamic LIC message
	IE name
	IE Type value
	Comments

	TimeStamp
	134
	Time Stamp.

	Sequence Number
	141
	CC sequence number.

	GPRSCorrelationNumber
	144
	Correlation Number identifier.

	communication-Identity-Number
	145
	CIN identifier.

	operator-Identifier
	146
	NOW/AP/SvP identifier.

	Network-Element-Identifier
	147
	NEID identifier.

	National-Parameters
	148
	National Parameters.

	LIID
	254
	LIID.

1.2 Static LIC header

The static LIC header would consist of two parts: fixed 6 octets long part, and variable length part.

The static LIC header could be encoded in the following way:
	
	
	Bits

	Octets
	
	8
	7
	6
	5
	4
	3
	2
	1

	1
	
	Version (‘0 0 1’)
	‘1’
	Spare ‘1 1‘
	DIR
	‘0’

	2
	
	Message Type (value 255)

	3-4
	
	Length of the CC PDU excluding the header

	5-6
	
	Sequence Number

	7
	
	SN
	LIID
	PE
	Spare ’1 1 1 1 1’

	8
	
	ID Type

	9
	
	Time Stamp Length in octets

	10 – m
	
	Time Stamp

	(m+1) – (m+2)
	
	GPRS Correlation Number length

	(m+3) – n
	
	GPRS Correlation Number

	(n+1) – (n+26)
	
	LIID (optional)

	(n+27) – (n+k)
	
	Private extension (optional)

Figure 2: Possible outline of the static LIC header

In case DF3 decides to include the optional elements then the DF3 shall set the respective flags (SN, LIID, PE) to value ‘1’. Otherwise, when an optional IE is not included in the LIC header, the DF3 sets the respective flag to ‘0’.

Upon reception of a new header, the LEA shall decode the header based on the flag values.

3

