Provable insecurity

Where artifacts come from, and how constructive math may help

Claus Diem and dreiwert

University of Leipzig

December 29, 2019

Part I

Problem

Contents

1 Hash functions in theory and practice

Contents

1 Hash functions in theory and practice

2 Constructive logic

Signed message

- We would like to have:

SHA3 is collision resistant, and therefore GnuPG-SHA3 is unforgeble

Signed message

- We would like to have:

SHA3 is collision resistant, and therefore GnuPG-SHA3 is unforgeble

- The problem is:

What shall "SHA3 is collision resistant" even mean?

What shall "collision resistant" mean?

Computer science guy

- It shall be very hard to find a collision.

What shall "collision resistant" mean?

Computer science guy

- It shall be very hard to find a collision.
- For example: It shall take more that 2^{100} operations.

What shall "collision resistant" mean?

Computer science guy

- It shall be very hard to find a collision.
- For example: It shall take more that 2^{100} operations.
- Key negative example: MD5 is not collision resistant, since collisions can be found within 15-30 minutes.

What shall "collision resistant" mean?

Computer science guy

- It shall be very hard to find a collision.
- For example: It shall take more that 2^{100} operations.
- Key negative example: MD5 is not collision resistant, since collisions can be found within 15-30 minutes.

What shall "collision resistant" mean?

Computer science guy

- It shall be very hard to find a collision.
- For example: It shall take more that 2^{100} operations.
- Key negative example: MD5 is not collision resistant, since collisions can be found within 15-30 minutes.

Math guy

What shall "collision resistant" mean?

Computer science guy

- It shall be very hard to find a collision.
- For example: It shall take more that 2^{100} operations.
- Key negative example: MD5 is not collision resistant, since collisions can be found within 15-30 minutes.

Math guy

- For any function h :

A collision is a pair (x, y) with $x \neq y$ and $h(x)=h(y)$

What shall "collision resistant" mean?

Computer science guy

- It shall be very hard to find a collision.
- For example: It shall take more that 2^{100} operations.
- Key negative example: MD5 is not collision resistant, since collisions can be found within 15-30 minutes.

Math guy

- For any function h :

A collision is a pair (x, y) with $x \neq y$ and $h(x)=h(y)$

- For a Hash function $h: D \longrightarrow R$ we have card $(D)>\operatorname{card}(R)$.
- There always exists a collision x, y.

What shall "collision resistant" mean?

Computer science guy

- It shall be very hard to find a collision.
- For example: It shall take more that 2^{100} operations.
- Key negative example: MD5 is not collision resistant, since collisions can be found within 15-30 minutes.

Math guy

- For any function h :

A collision is a pair (x, y) with $x \neq y$ and $h(x)=h(y)$

- For a Hash function $h: D \longrightarrow R$ we have card $(D)>\operatorname{card}(R)$.
- There always exists a collision x, y.
- So no "real" hash function is collision free.

The math guy's fastest attack

```
> int main() {
    std::cout << "x,y" << std::endl;
    return 0;
    }
```


The math guy's fastest attack

- int main() \{
std::cout << "x,y" << std: :endl; return 0;
\}
- Complexity: constant

The math guy's fastest attack

- int main() \{
std::cout << "x,y" << std: :endl; return 0;
\}
- Complexity: constant
- The attack always exists

The math guy's fastest attack

- int main()
std::cout << "x,y" << std: :endl;
return 0;
\}
- Complexity: constant
- The attack always exists
- Computer science guy: "What!?" You write down an "attack" without knowing the attack?

The math guy's fastest attack

- int main() \{
std::cout << "x,y" << std: :endl;
return 0;
\}
- Complexity: constant
- The attack always exists
- Computer science guy: "What!?" You write down an "attack" without knowing the attack?
- Math guy: "Yes, it exists" ...

What shall "collision resistant" mean?

Theoretical cryptographer

What shall "collision resistant" mean?

Theoretical cryptographer

What shall "collision resistant" mean?

Theoretical cryptographer

- The mathematician is right, but the conclusion is not acceptable.

What shall "collision resistant" mean?

Theoretical cryptographer

- The mathematician is right, but the conclusion is not acceptable.
- Therefore, we introduce a parameter and look at it from an asymptotic point of view.

What shall "collision resistant" mean?

Theoretical cryptographer

- The mathematician is right, but the conclusion is not acceptable.
- Therefore, we introduce a parameter and look at it from an asymptotic point of view.
- We look at attackers running in polynomial time, talk about success probability.

What shall "collision resistant" mean?

Theoretical cryptographer

- The mathematician is right, but the conclusion is not acceptable.
- Therefore, we introduce a parameter and look at it from an asymptotic point of view.
- We look at attackers running in polynomial time, talk about success probability.
- And then later we fix the parameter and apply this to a "real" system.

Variable output length

- We have $h=\left(h_{s}\right)_{s}$ with $h_{s}:\{0,1\}^{*} \rightarrow\{0,1\}^{\ell(s)}$ (security parameter s)

Variable output length

- We have $h=\left(h_{s}\right)_{s}$ with $h_{s}:\{0,1\}^{*} \rightarrow\{0,1\}^{\ell(s)}$ (security parameter s)
- Attacker A gets $1^{\ell(s)}$ as an input, outputs x, y

Variable output length

- We have $h=\left(h_{s}\right)_{s}$ with $h_{s}:\{0,1\}^{*} \rightarrow\{0,1\}^{\ell(s)}$ (security parameter s)
- Attacker A gets $1^{\ell(s)}$ as an input, outputs x, y
- Collision resistance: $\forall n: \exists s_{0}: \forall s: s>s_{0} \Rightarrow P\left[x \neq y \wedge h_{s}(x)=h_{s}(y)\right]<\frac{1}{\ell(s)^{n}}$

Variable output length

- We have $h=\left(h_{s}\right)_{s}$ with $h_{s}:\{0,1\}^{*} \rightarrow\{0,1\}^{\ell(s)}$ (security parameter s)
- Attacker A gets $1^{\ell(s)}$ as an input, outputs x, y
- Collision resistance: $\forall n: \exists s_{0}: \forall s: s>s_{0} \Rightarrow P\left[x \neq y \wedge h_{s}(x)=h_{s}(y)\right]<\frac{1}{\ell(s)^{n}}$
- (after Rogaway, 2007)

Artifact: ℓ

- Suppose the family $h=\left(h_{s}\right)_{s}$ is collision free.

What can we then conclude about $h_{s_{0}}$ for a particular paramater s_{0} ?

Artifact: ℓ

- Suppose the family $h=\left(h_{s}\right)_{s}$ is collision free.

What can we then conclude about $h_{s_{0}}$ for a particular paramater s_{0} ?

- Strictly speaking nothing:

Artifact: ℓ

- Suppose the family $h=\left(h_{s}\right)_{s}$ is collision free.

What can we then conclude about $h_{s_{0}}$ for a particular paramater s_{0} ?

- Strictly speaking nothing:
- Suppose h is collision resistant and $h_{s}^{*}=\left\{\begin{array}{l}h_{s}, \text { if } I(s) \neq 128, \\ M D 5, \text { if } I(s)=128 .\end{array}\right.$

Then h^{*} is also collision resistant by the definition.

Artifact: ℓ

- Suppose the family $h=\left(h_{s}\right)_{s}$ is collision free.

What can we then conclude about $h_{s_{0}}$ for a particular paramater s_{0} ?

- Strictly speaking nothing:
- Suppose h is collision resistant and $h_{s}^{*}=\left\{\begin{array}{l}h_{s}, \text { if } I(s) \neq 128, \\ M D 5, \text { if } I(s)=128 .\end{array}\right.$

Then h^{*} is also collision resistant by the definition.

- But MD5 is still broken ...

Artifact: ℓ

- Suppose the family $h=\left(h_{s}\right)_{s}$ is collision free.

What can we then conclude about $h_{s_{0}}$ for a particular paramater s_{0} ?

- Strictly speaking nothing:
- Suppose h is collision resistant and $h_{s}^{*}=\left\{\begin{array}{l}h_{s}, \text { if } I(s) \neq 128, \\ M D 5, \text { if } I(s)=128 .\end{array}\right.$

Then h^{*} is also collision resistant by the definition.

- But MD5 is still broken ...
- Such a family h^{*} might seem to be "artificially constructed", but maybe not ...

Keyed hash functions

- $h_{s, k}:\{0,1\}^{*} \rightarrow\{0,1\}^{\prime(s)}$ (security parameter s, key k)

Keyed hash functions

- $h_{s, k}:\{0,1\}^{*} \rightarrow\{0,1\}^{\prime(s)}$ (security parameter s, key k)
- Attacker A_{s} reads k, outputs x, y

Keyed hash functions

- $h_{s, k}:\{0,1\}^{*} \rightarrow\{0,1\}^{\prime(s)}$ (security parameter s, key k)
- Attacker A_{s} reads k, outputs x, y
- collision resistant: $\forall n: \exists s_{0}: \forall s: s>s_{0} \Rightarrow P\left[x \neq y \wedge h_{s, k}(x)=h_{s, k}(y)\right]<\frac{1}{l(s)^{n}}$

Keyed hash functions

- $h_{s, k}:\{0,1\}^{*} \rightarrow\{0,1\}^{\prime(s)}$ (security parameter s, key k)
- Attacker A_{s} reads k, outputs x, y
- collision resistant: $\forall n: \exists s_{0}: \forall s: s>s_{0} \Rightarrow P\left[x \neq y \wedge h_{s, k}(x)=h_{s, k}(y)\right]<\frac{1}{I(s)^{n}}$
- (after Damgard 1987)

Keyed hash functions

- $h_{s, k}:\{0,1\}^{*} \rightarrow\{0,1\}^{\prime(s)}$ (security parameter s, key k)
- Attacker A_{s} reads k, outputs x, y
- collision resistant: $\forall n: \exists s_{0}: \forall s: s>s_{0} \Rightarrow P\left[x \neq y \wedge h_{s, k}(x)=h_{s, k}(y)\right]<\frac{1}{l(s)^{n}}$
- (after Damgard 1987)
- Allows working with A_{s} working on fixed output lengths

Keyed hash functions

- $h_{s, k}:\{0,1\}^{*} \rightarrow\{0,1\}^{/(s)}$ (security parameter s, key k)
- Attacker A_{s} reads k, outputs x, y
- collision resistant: $\forall n: \exists s_{0}: \forall s: s>s_{0} \Rightarrow P\left[x \neq y \wedge h_{s, k}(x)=h_{s, k}(y)\right]<\frac{1}{l(s)^{n}}$
- (after Damgard 1987)
- Allows working with A_{s} working on fixed output lengths
- Might seem to be a good solution: Not asymptotic, does not immediately lead to a "trivial" attack.

Artifact: k

- But: Real hash functions normally don't have keys

Artifact: k

- But: Real hash functions normally don't have keys
- Possible interpretation in some cases: key = initialization vector

Artifact: k

- But: Real hash functions normally don't have keys
- Possible interpretation in some cases: key = initialization vector
- But then, free-start collision attacks are being analyzed

Artifact: k

- But: Real hash functions normally don't have keys
- Possible interpretation in some cases: key = initialization vector
- But then, free-start collision attacks are being analyzed
- But without variable (!) k, A_{s} can always be the trivial attacker

Artifact: k

- But: Real hash functions normally don't have keys
- Possible interpretation in some cases: key = initialization vector
- But then, free-start collision attacks are being analyzed
- But without variable (!) k, A_{s} can always be the trivial attacker
- Assume h being collision resistant and

$$
h_{s, k}^{*}=\left\{\begin{array}{l}
h_{s, k}, \text { if } I(s) \neq 128 \\
M D 5, \text { if } I(s)=128 \wedge k=k_{0}
\end{array}\right.
$$

Artifact: k

- But: Real hash functions normally don't have keys
- Possible interpretation in some cases: key = initialization vector
- But then, free-start collision attacks are being analyzed
- But without variable (!) k, A_{s} can always be the trivial attacker
- Assume h being collision resistant and

$$
h_{s, k}^{*}=\left\{\begin{array}{l}
h_{s, k}, \text { if } I(s) \neq 128 \\
M D 5, \text { if } I(s)=128 \wedge k=k_{0}
\end{array}\right.
$$

- So, strictly speaking from " h is collision resistant" we still cannot conclude anything about "concrete hash functions".

Practical security

Figure: Drawings: xkcd.com, modification to text (CC BY-NC 2.5)

"Provably secure" hash functions

- collision resistant hash functions according to these definitions can be constructed

"Provably secure" hash functions

- collision resistant hash functions according to these definitions can be constructed (under suitable assumption!).
- e.g. VSH, ECOH, FSB

"Provably secure" hash functions

- collision resistant hash functions according to these definitions can be constructed (under suitable assumption!).
- e.g. VSH, ECOH, FSB
- Often slow and of little practical relevance

"Provably secure" hash functions

- collision resistant hash functions according to these definitions can be constructed (under suitable assumption!).
- e.g. VSH, ECOH, FSB
- Often slow and of little practical relevance
- Who decides about the length and the key to use?

First conclusions

- Problematic to characterize families of functions when seeking for results on a specific hash functions

First conclusions

- Problematic to characterize families of functions when seeking for results on a specific hash functions
- Where does the (existing) attacker A come from?

First conclusions

- Problematic to characterize families of functions when seeking for results on a specific hash functions
- Where does the (existing) attacker A come from?
- Explicit precomputation: $A_{\text {pre }}$ computes attacker A

First conclusions

- Problematic to characterize families of functions when seeking for results on a specific hash functions
- Where does the (existing) attacker A come from?
- Explicit precomputation: $A_{\text {pre }}$ computes attacker A
- Cost of attack: e.g. $\operatorname{TIME}\left(A_{\text {pre }}\right)+\operatorname{TIME}(A)$

The fastest attack, reloaded

- int main() \{
std::cout \ll "int main() $\{" \ll$ std: :endl;
std: $:$ cout $\ll "$ std: cout $\ll \backslash " x, y \backslash \backslash n \backslash " ; \backslash n " ;$
std: :cout \ll " return $0 ; " \ll$ std: :endl;
std::cout \ll "\}" \ll std: :endl;
return 0;
\}

The fastest attack, reloaded

- int main() \{ std::cout \ll "int main() $\{" \ll$ std: :endl;
std: $:$ cout $\ll "$ std: cout $\ll \backslash " x, y \backslash \backslash n \backslash " ; \backslash n " ;$
std: :cout \ll " return $0 ; " \ll$ std: :endl;
std: :cout << "\}" << std: :endl;
return 0;
\}
- Complexity: constant

The fastest attack, reloaded

- int main() \{

$$
\text { std::cout << "int main() }\{" \ll \text { std::endl; }
$$

$$
\text { std: }: \text { cout } \ll " \text { std: }: \text { cout } \ll \backslash " x, y \backslash \backslash n \backslash " ; \backslash n " ;
$$

$$
\text { std: :cout } \ll \text { " return } 0 ; " \ll \text { std::endl; }
$$

$$
\text { std::cout } \ll "\} " \ll \text { std: :endl; }
$$

$$
\text { return } 0 ;
$$

\}

- Complexity: constant
- Anything gained?

Closing the gap

- An idea (after Bernstein and Lange 2012):

Size limitation for $A_{\text {pre }}$

Closing the gap

- An idea (after Bernstein and Lange 2012):

Size limitation for $A_{\text {pre }}$

- Outrules trivial attacks for sufficiently large output lengths

Closing the gap

- An idea (after Bernstein and Lange 2012):

Size limitation for $A_{\text {pre }}$

- Outrules trivial attacks for sufficiently large output lengths
- Still not useful for practically used hash functions.

Fundamental issue remains

- We know: If a Hash function h is collision resistant GnuPG-h is unforgable.

Fundamental issue remains

- We know: If a Hash function h is collision resistant GnuPG-h is unforgable.
- We want to argue that some "real" Hash function h is collision resistant.

Fundamental issue remains

- We know: If a Hash function h is collision resistant GnuPG-h is unforgable.
- We want to argue that some "real" Hash function h is collision resistant.
- But such an h is never collision resistant.

Fundamental issue remains

- We know: If a Hash function h is collision resistant GnuPG-h is unforgable.
- We want to argue that some "real" Hash function h is collision resistant.
- But such an h is never collision resistant.
- Only in the asymptotic setting or in the Random Oracle model this can be proven.

Fundamental issue remains

- We know: If a Hash function h is collision resistant GnuPG-h is unforgable.
- We want to argue that some "real" Hash function h is collision resistant.
- But such an h is never collision resistant.
- Only in the asymptotic setting or in the Random Oracle model this can be proven.
- So usually the known proofs are applied where they cannot really be applied
- Is this really what we expect from a „proof"?

Interpretation of proofs

Figure: Drawings: xkcd.com, modification to text (CC BY-NC 2.5)

Getting to the root cause

- Where do x and y come from?

Getting to the root cause

- Where do x and y come from?
$\checkmark x, y \leftarrow$ pigeonhole principle \leftarrow mathematical logic

Getting to the root cause

- Where do x and y come from?
$\checkmark x, y \leftarrow$ pigeonhole principle \leftarrow mathematical logic
- Language consisting of: $\vee, \wedge, \neg, \Longrightarrow, \exists, \forall$ and symbols

Getting to the root cause

- Where do x and y come from?
$\checkmark x, y \leftarrow$ pigeonhole principle \leftarrow mathematical logic
- Language consisting of: $\vee, \wedge, \neg, \Longrightarrow, \exists, \forall$ and symbols
- Problem may be caused by the meaning of the symbols

Part II

Constructive logic

What is constructive logic?

- Symbols as in classical logic

What is constructive logic?

- Symbols as in classical logic
- Meaning partially different

What is constructive logic?

- Symbols as in classical logic
- Meaning partially different
- "x exists" means "we can construct x "

From proofs to algorithms

- BHK interpretations give a meaning to constructive proofs.

From proofs to algorithms

- BHK interpretations give a meaning to constructive proofs.
- (after Brouwer-Heyting-Kolmogorov, more seldomly Brouwer-Heyting-Kreisel)

From proofs to algorithms

- BHK interpretations give a meaning to constructive proofs.
- (after Brouwer-Heyting-Kolmogorov, more seldomly Brouwer-Heyting-Kreisel)
- Realizations formalize these interpretations.

From proofs to algorithms

- BHK interpretations give a meaning to constructive proofs.
- (after Brouwer-Heyting-Kolmogorov, more seldomly Brouwer-Heyting-Kreisel)
- Realizations formalize these interpretations.
- Realizations have a strong relationship to algorithms

What are realizations?

- "a realizes A " means:

What are realizations?

- "a realizes A " means: a is a proof of A
- defined inductively over the structure of the proven formula

Conjunction

- structure: $A \wedge B$

Conjunction

- structure: $A \wedge B$
- $\langle a, b\rangle$ realizes $A \wedge B$ iff a realizes A and b realizes B

Conjunction

- structure: $A \wedge B$
- $\langle a, b\rangle$ realizes $A \wedge B$ iff a realizes A and b realizes B
- Interpretation: both conjuncts must be proved

Conjunction

- structure: $A \wedge B$
- $\langle a, b\rangle$ realizes $A \wedge B$ iff a realizes A and b realizes B
- Interpretation: both conjuncts must be proved
- Meaning as in classical logic

Disjunction

- structure: $A \vee B$

Disjunction

- structure: $A \vee B$
- $\langle 0, a\rangle$ realizes $A \vee B$ iff a realizes A
- $\langle 1, b\rangle$ realizes $A \vee B$ iff b realizes B

Disjunction

- structure: $A \vee B$
- $\langle 0, a\rangle$ realizes $A \vee B$ iff a realizes A
- $\langle 1, b\rangle$ realizes $A \vee B$ iff b realizes B
- Interpretation: one must either prove A or prove B

Disjunction

- structure: $A \vee B$
- $\langle 0, a\rangle$ realizes $A \vee B$ iff a realizes A
- $\langle 1, b\rangle$ realizes $A \vee B$ iff b realizes B
- Interpretation: one must either prove A or prove B
- Stronger meaning as a disjunction in classical logic

Implication

- structure: $A \Rightarrow B$

Implication

- structure: $A \Rightarrow B$
- f realizes $A \Rightarrow B$ means: If a realizes A then $f(a)$ realizes B

Implication

- structure: $A \Rightarrow B$
- f realizes $A \Rightarrow B$ means: If a realizes A then $f(a)$ realizes B
- Interpretation: convert any proof for A into a proof for B

Implication

- structure: $A \Rightarrow B$
- f realizes $A \Rightarrow B$ means: If a realizes A then $f(a)$ realizes B
- Interpretation: convert any proof for A into a proof for B
- Meaning as in classical logic

Negation

- structure: $\neg A$

Negation

- structure: $\neg A$
- f realizes $\neg A$ iff. f realizes $A \Rightarrow 0=1$

Negation

- structure: $\neg A$
- f realizes $\neg A$ iff. f realizes $A \Rightarrow 0=1$
- Interpretation: derive a contradiction from any proof for A

Negation

- structure: $\neg A$
- f realizes $\neg A$ iff. f realizes $A \Rightarrow 0=1$
- Interpretation: derive a contradiction from any proof for A
- Meaning weaker as a negation in classical logic

Negation

- structure: $\neg A$
- f realizes $\neg A$ iff. f realizes $A \Rightarrow 0=1$
- Interpretation: derive a contradiction from any proof for A
- Meaning weaker as a negation in classical logic
- $A \Rightarrow \neg \neg A$, but not necessarily $\neg \neg A \Rightarrow A$

Universal quantification

- structure: $\forall x: A$

Universal quantification

- structure: $\forall x: A$
- f realizes $\forall x$: A iff. $f(a)$ realizes $A[x / a]$ for every a

Universal quantification

- structure: $\forall x: A$
- f realizes $\forall x$: A iff. $f(a)$ realizes $A[x / a]$ for every a
- Interpretation: convert any object a into a proof for $A[x / a]$

Universal quantification

- structure: $\forall x: A$
- f realizes $\forall x$: A iff. $f(a)$ realizes $A[x / a]$ for every a
- Interpretation: convert any object a into a proof for $A[x / a]$
- Meaning as in classical logic

Existential quantification

- structure: $\exists x: A$

Existential quantification

- structure: $\exists x: A$
- $\langle w, a\rangle$ realizes $\exists x$: A iff. a realizes $A[x / w]$

Existential quantification

- structure: $\exists x: A$
- $\langle w, a\rangle$ realizes $\exists x$: A iff. a realizes $A[x / w]$
- Interpretation: name a witness w, and prove that $A[x / w]$ holds

Existential quantification

- structure: $\exists x: A$
- $\langle w, a\rangle$ realizes $\exists x$: A iff. a realizes $A[x / w]$
- Interpretation: name a witness w, and prove that $A[x / w]$ holds
- Stronger meaning as an existential quantification in classical logic

Lambda expressions

- Lambda expressions as a representation of realizations

Lambda expressions

- Lambda expressions as a representation of realizations
- Lambda expressions Λ over a set of variables \mathbb{L} are:

Lambda expressions

- Lambda expressions as a representation of realizations
- Lambda expressions Λ over a set of variables \mathbb{L} are:
- Variables / where $/ \in \mathbb{L}$

Lambda expressions

- Lambda expressions as a representation of realizations
- Lambda expressions Λ over a set of variables \mathbb{L} are:
- Variables / where $I \in \mathbb{L}$
- Applications $A B$ where $\{A, B\} \subset \Lambda$

Lambda expressions

- Lambda expressions as a representation of realizations
- Lambda expressions Λ over a set of variables \mathbb{L} are:
- Variables / where $I \in \mathbb{L}$
- Applications $A B$ where $\{A, B\} \subset \Lambda$
- Abstractions $\lambda x: A$ where $x \in \mathbb{L}$ and $A \in \Lambda$

Lambda calculus

- Lambda calculus on lambda expressions through beta reduction

Lambda calculus

- Lambda calculus on lambda expressions through beta reduction
- $(\lambda x: A) B \underset{\beta}{\rightarrow} A[x / B]$ (A, where occurrences of x are substituted by B)

Lambda calculus

- Lambda calculus on lambda expressions through beta reduction
- $(\lambda x: A) B \underset{\beta}{\rightarrow} A[x / B]$ (A, where occurrences of x are substituted by $B)$
- $A B \underset{\beta}{\rightarrow} A C$, where $B \underset{\beta}{\rightarrow} C$
- $A C \underset{\beta}{\rightarrow} B C$, where $A \underset{\beta}{\rightarrow} B$

Lambda calculus

- Lambda calculus on lambda expressions through beta reduction
- $(\lambda x: A) B \underset{\beta}{\rightarrow} A[x / B]$ (A, where occurrences of x are substituted by $B)$
- $A B \underset{\beta}{\rightarrow} A C$, where $B \underset{\beta}{\rightarrow} C$
- $A C \underset{\beta}{\rightarrow} B C$, where $A \underset{\beta}{\rightarrow} B$
- Turing complete (Church-Turing-thesis)

Lambda calculus

- Lambda calculus on lambda expressions through beta reduction
- $(\lambda x: A) B \underset{\beta}{\rightarrow} A[x / B]$ (A, where occurrences of x are substituted by $B)$
- $A B \underset{\beta}{\rightarrow} A C$, where $B \underset{\beta}{\rightarrow} C$
- $A C \underset{\beta}{\rightarrow} B C$, where $A \underset{\beta}{\rightarrow} B$
- Turing complete (Church-Turing-thesis)
- Example: $(\lambda x: 2(x+y)) 3 \underset{\beta}{\rightarrow} 2(3+y)$

Lambda calculus

- Lambda calculus on lambda expressions through beta reduction
- $(\lambda x: A) B \underset{\beta}{\rightarrow} A[x / B]$ (A, where occurrences of x are substituted by $B)$
- $A B \underset{\beta}{\rightarrow} A C$, where $B \underset{\beta}{\rightarrow} C$
- $A C \underset{\beta}{\rightarrow} B C$, where $A \underset{\beta}{\rightarrow} B$
- Turing complete (Church-Turing-thesis)
- Example: $(\lambda x: 2(x+y)) 3 \vec{\beta}^{2(3+y)}$
- Counting beta reductions can lead to a time complexity measure

Emulating classical logic

- The behaviour of classical logic can achieved by working with formulas in negative form

Emulating classical logic

- The behaviour of classical logic can achieved by working with formulas in negative form
- $\neg \forall x: \neg A$ instead of $\exists x: A$

Emulating classical logic

- The behaviour of classical logic can achieved by working with formulas in negative form
- $\neg \forall x: \neg A$ instead of $\exists x: A$
- $\neg(\neg A \wedge \neg B)$ instead of $A \vee B$

Emulating classical logic

- The behaviour of classical logic can achieved by working with formulas in negative form
- $\neg \forall x: \neg A$ instead of $\exists x: A$
- $\neg(\neg A \wedge \neg B)$ instead of $A \vee B$
- $\neg \neg A$ instead of A

Emulating classical logic

- The behaviour of classical logic can achieved by working with formulas in negative form
- $\neg \forall x: \neg A$ instead of $\exists x: A$
- $\neg(\neg A \wedge \neg B)$ instead of $A \vee B$
- $\neg \neg A$ instead of A
- On these, classical rules of inference apply

Algorithmic content

- $\langle a, b\rangle$ realizes $A \wedge B$

Algorithmic content

- $\langle a, b\rangle$ realizes $A \wedge B$
- $\langle v, a\rangle$ realizes $A \vee B$

Algorithmic content

- $\langle a, b\rangle$ realizes $A \wedge B$
- $\langle v, a\rangle$ realizes $A \vee B$
- f realizes $A \Rightarrow B$

Algorithmic content

- $\langle a, b\rangle$ realizes $A \wedge B$
- $\langle v, a\rangle$ realizes $A \vee B$
- f realizes $A \Rightarrow B$
- f realizes $\forall x$: A

Algorithmic content

- $\langle a, b\rangle$ realizes $A \wedge B$
- $\langle v, a\rangle$ realizes $A \vee B$
- f realizes $A \Rightarrow B$
- f realizes $\forall x$: A
- $\langle w, a\rangle$ realizes $\exists x: A$

Algorithmic content

- $\langle a, b\rangle$ realizes $A \wedge B$
- $\langle v, a\rangle$ realizes $A \vee B$
- f realizes $A \Rightarrow B$
- f realizes $\forall x$: A
- $\langle w, a\rangle$ realizes $\exists x: A$
- Algorithms can be extracted from the realization of „positive" formulas

Law of excluded middle

- $A \vee \neg A$ does not hold in general

Law of excluded middle

- $A \vee \neg A$ does not hold in general
- For specific A, it may be provable

Law of excluded middle

- $A \vee \neg A$ does not hold in general
- For specific A, it may be provable
- Thus, lemmas are often of the form $\forall x y z \ldots: P(x, y, z, \ldots) \vee \neg P(x, y, z, \ldots)$

Law of excluded middle

- $A \vee \neg A$ does not hold in general
- For specific A, it may be provable
- Thus, lemmas are often of the form $\forall x y z \ldots: P(x, y, z, \ldots) \vee \neg P(x, y, z, \ldots)$
- e.g. $\forall x y:(x=y) \vee \neg(x=y)$

Law of excluded middle

- $A \vee \neg A$ does not hold in general
- For specific A, it may be provable
- Thus, lemmas are often of the form $\forall x y z \ldots: P(x, y, z, \ldots) \vee \neg P(x, y, z, \ldots)$
- e.g. $\forall x y:(x=y) \vee \neg(x=y)$
- Realization $f(x, y)=\left\{\begin{array}{l}\langle 0, a\rangle, \text { if } x=y, \\ \langle 1, b\rangle, \text { if } x \neq y .\end{array}\right.$

Law of excluded middle

- $A \vee \neg A$ does not hold in general
- For specific A, it may be provable
- Thus, lemmas are often of the form $\forall x y z \ldots: P(x, y, z, \ldots) \vee \neg P(x, y, z, \ldots)$
- e.g. $\forall x y:(x=y) \vee \neg(x=y)$
- Realization $f(x, y)=\left\{\begin{array}{l}\langle 0, a\rangle, \text { if } x=y, \\ \langle 1, b\rangle, \text { if } x \neq y .\end{array}\right.$
- In extracted algorithms: „subroutine"

Constructive math

- Only pure logic considered so far

Constructive math

- Only pure logic considered so far
- To define mathematical objects, axioms are needed

Constructive math

- Only pure logic considered so far
- To define mathematical objects, axioms are needed
- Important for algorithmic content: mathematical induction

Induction

- $\forall P:(P(0) \wedge \forall n: P(n) \Rightarrow P(n+1)) \Rightarrow \forall n: P(n)$

Induction

- $\forall P:(P(0) \wedge \forall n: P(n) \Rightarrow P(n+1)) \Rightarrow \forall n: P(n)$
- An „interface" for the realization is given by this structure

Induction

- $\forall P:(P(0) \wedge \forall n: P(n) \Rightarrow P(n+1)) \Rightarrow \forall n: P(n)$
- An „interface" for the realization is given by this structure
- IP $\langle A, \lambda n: B\rangle n$ (A base case, B induction step)

Induction

- $\forall P:(P(0) \wedge \forall n: P(n) \Rightarrow P(n+1)) \Rightarrow \forall n: P(n)$
- An "interface" for the realization is given by this structure
- IP $\langle A, \lambda n: B\rangle n$ (A base case, B induction step)
- extracted algorithm: recursive

Hash collision as a positive formula

- $\exists A: P[A(r)=\langle x, y\rangle \wedge x \neq y \wedge h(x)=h(y)]>\varepsilon(r$ source of randomness $)$

Hash collision as a positive formula

- $\exists A: P[A(r)=\langle x, y\rangle \wedge x \neq y \wedge h(x)=h(y)]>\varepsilon(r$ source of randomness)
- or: $\exists A: \neg(P[A(r)=\langle x, y\rangle \wedge x \neq y \wedge h(x)=h(y)] \leq \varepsilon)$

Hash collision as a positive formula

- $\exists A: P[A(r)=\langle x, y\rangle \wedge x \neq y \wedge h(x)=h(y)]>\varepsilon(r$ source of randomness)
- or: $\exists A: \neg(P[A(r)=\langle x, y\rangle \wedge x \neq y \wedge h(x)=h(y)] \leq \varepsilon)$
- $A_{\text {pre }}$ is the algorithm extracted from the realization

Hash collision as a positive formula

- $\exists A: P[A(r)=\langle x, y\rangle \wedge x \neq y \wedge h(x)=h(y)]>\varepsilon(r$ source of randomness)
- or: $\exists A: \neg(P[A(r)=\langle x, y\rangle \wedge x \neq y \wedge h(x)=h(y)] \leq \varepsilon)$
- $A_{\text {pre }}$ is the algorithm extracted from the realization
- Where a collision x, y is known, the realization can be written as $\langle\lambda r:\langle x, y\rangle, a\rangle$ (a having no algorithmic content)

Hash collision as a positive formula

- $\exists A: P[A(r)=\langle x, y\rangle \wedge x \neq y \wedge h(x)=h(y)]>\varepsilon(r$ source of randomness)
- or: $\exists A: \neg(P[A(r)=\langle x, y\rangle \wedge x \neq y \wedge h(x)=h(y)] \leq \varepsilon)$
- $A_{\text {pre }}$ is the algorithm extracted from the realization
- Where a collision x, y is known, the realization can be written as $\langle\lambda r:\langle x, y\rangle, a\rangle$ (a having no algorithmic content)
- Where no collision is known, essentially the pigeonhole principle is realized

Hash collision as a positive formula

- $\exists A: P[A(r)=\langle x, y\rangle \wedge x \neq y \wedge h(x)=h(y)]>\varepsilon(r$ source of randomness)
- or: $\exists A: \neg(P[A(r)=\langle x, y\rangle \wedge x \neq y \wedge h(x)=h(y)] \leq \varepsilon)$
- $A_{\text {pre }}$ is the algorithm extracted from the realization
- Where a collision x, y is known, the realization can be written as $\langle\lambda r:\langle x, y\rangle, a\rangle$ (a having no algorithmic content)
- Where no collision is known, essentially the pigeonhole principle is realized
- Proof possible in constructive mathematics, but leads to $A_{\text {pre }}$ having a "long" run time

Hash collision as a positive formula

- $\exists A: P[A(r)=\langle x, y\rangle \wedge x \neq y \wedge h(x)=h(y)]>\varepsilon(r$ source of randomness)
- or: $\exists A: \neg(P[A(r)=\langle x, y\rangle \wedge x \neq y \wedge h(x)=h(y)] \leq \varepsilon)$
- $A_{\text {pre }}$ is the algorithm extracted from the realization
- Where a collision x, y is known, the realization can be written as $\langle\lambda r:\langle x, y\rangle, a\rangle$ (a having no algorithmic content)
- Where no collision is known, essentially the pigeonhole principle is realized
- Proof possible in constructive mathematics, but leads to $A_{\text {pre }}$ having a "long" run time
- Or: $\langle a, b\rangle$, a being an „actual" attack algorithm

Pigeonhole principle, revisited

- Remember the math guy?

Pigeonhole principle, revisited

- Remember the math guy?
- Constructively, $\operatorname{card}(D)>\operatorname{card}(R)$ just proved that $\neg \forall x y: \neg(x \neq y \wedge h(x)=h(y))$

Pigeonhole principle, revisited

- Remember the math guy?
- Constructively, $\operatorname{card}(D)>\operatorname{card}(R)$ just proved that $\neg \forall x y: \neg(x \neq y \wedge h(x)=h(y))$
- Constructively, $\exists x y: x \neq y \wedge h(x)=h(y)$ cannot be derived just from this

Pigeonhole principle, revisited

- Remember the math guy?
- Constructively, $\operatorname{card}(D)>\operatorname{card}(R)$ just proved that $\neg \forall x y: \neg(x \neq y \wedge h(x)=h(y))$
- Constructively, $\exists x y: x \neq y \wedge h(x)=h(y)$ cannot be derived just from this
- This requires induction, thus leads to additional complexity

Complexity of precomputation

- $\exists A: P[A(r)=\langle x, y\rangle \wedge x \neq y \wedge h(x)=h(y)]>\varepsilon$

Complexity of precomputation

- $\exists A: P[A(r)=\langle x, y\rangle \wedge x \neq y \wedge h(x)=h(y)]>\varepsilon$
- requires: pigeonhole principle

Complexity of precomputation

- $\exists A: P[A(r)=\langle x, y\rangle \wedge x \neq y \wedge h(x)=h(y)]>\varepsilon$
- requires: pigeonhole principle
- requires: $\forall f x y:(\exists z: z<y \wedge f(z)=x) \vee \neg(\exists z: z<y \wedge f(z)=x)$

Summary

- Proof in constructive logic...

Summary

- Proof in constructive logic...
- ...leads to algorithm from the realization

Summary

- Proof in constructive logic...
- ...leads to algorithm from the realization
- The algorithm can be analyzed for its costs

Summary

- Proof in constructive logic...
- ...leads to algorithm from the realization
- The algorithm can be analyzed for its costs
- We cannot disprove that the collision exists (and shouldn't be able to)

Summary

- Proof in constructive logic...
- ...leads to algorithm from the realization
- The algorithm can be analyzed for its costs
- We cannot disprove that the collision exists (and shouldn't be able to)
- We can put a cost on its logical derivation

Formalizing collision resistance

- In the algorithm extracted from the realization, precomputation can only be explicit

Formalizing collision resistance

- In the algorithm extracted from the realization, precomputation can only be explicit
- Cost of the attack: $\operatorname{TIME}\left(A_{\text {pre }}\right)+\operatorname{TIME}(A)$

Formalizing collision resistance

- In the algorithm extracted from the realization, precomputation can only be explicit
- Cost of the attack: $\operatorname{TIME}\left(A_{\text {pre }}\right)+\operatorname{TIME}(A)$
- Problem: Algorithm $A_{\text {pre }}$ only in lambda calculus for now - other models might be easier to examine

Formalizing collision resistance

- In the algorithm extracted from the realization, precomputation can only be explicit
- Cost of the attack: $\operatorname{TIME}\left(A_{\text {pre }}\right)+\operatorname{TIME}(A)$
- Problem: Algorithm $A_{\text {pre }}$ only in lambda calculus for now - other models might be easier to examine
- Problem: possibly necessary to constructively prove theorems again that were already classically proved

Formalizing collision resistance

- In the algorithm extracted from the realization, precomputation can only be explicit
- Cost of the attack: $\operatorname{TIME}\left(A_{\text {pre }}\right)+\operatorname{TIME}(A)$
- Problem: Algorithm $A_{\text {pre }}$ only in lambda calculus for now - other models might be easier to examine
- Problem: possibly necessary to constructively prove theorems again that were already classically proved
- Problem: checking costs in two tiers

Formalizing collision resistance

- In the algorithm extracted from the realization, precomputation can only be explicit
- Cost of the attack: $\operatorname{TIME}\left(A_{\text {pre }}\right)+\operatorname{TIME}(A)$
- Problem: Algorithm $A_{\text {pre }}$ only in lambda calculus for now - other models might be easier to examine
- Problem: possibly necessary to constructively prove theorems again that were already classically proved
- Problem: checking costs in two tiers
- What happens to security reductions?

Thank you for your attention. dreiwert@irc.hackint.org

睩 Daniel J. Bernstein and Tanja Lange.
Non-uniform cracks in the concrete: the power of free precomputation
围 Ivan Dåmgard.
Collision free hash functions and public key signature schemes

- Phillip Rogaway.

Formalizing Human Ignorance: Collision-Resistant Hashing without the Keys
Xiaoyun Wang and Hongbo Yu.
How to Break MD5 and Other Hash Functions

